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Integrable Kondo impurities in the one-dimensional
supersymmetricU model of strongly correlated electrons

Huan-Qiang Zhou†, Xiang-Yu Ge‡ and Mark D Gould
Department of Mathematics, University of Queensland, Brisbane, Queensland 4072, Australia

Received 25 January 1999

Abstract. Integrable Kondo impurities in the one-dimensional supersymmetricU model of
strongly correlated electrons are studied by means of the boundary graded quantum inverse
scattering method. The boundaryK-matrices depending on the local magnetic moments of the
impurities are presented as non-trivial realizations of the reflection equation algebras in an impurity
Hilbert space. Furthermore, the model Hamiltonian is diagonalized and the Bethe ansatz equations
are derived. It is interesting to note that our model exhibits a free parameter in the bulk Hamiltonian
but no free parameter exists on the boundaries. This is in sharp contrast to the impurity models
arising from the supersymmetrict–J and extended Hubbard models where there is no free parameter
in the bulk but there is a free parameter on each boundary.

Recently, there has been substantial research devoted to the investigation of the theory of
impurities coupled to Luttinger liquids. Such a problem was first considered by Lee and
Toner [1]. By using the perturbative renormalization group theory they found that the Kondo
temperature crosses from a generic power-law dependence on the Kondo coupling constant
to an exponential one in the infinite limit. Afterwards, a ‘poor man’s’ scaling procedure was
carried out by Furusaki and Nagaosa [2] ,who found a stable strong-coupling fixed point for
both antiferromagnetic and ferromagnetic cases. On the other hand, boundary conformal field
theory, first developed by Affleck and Ludwig [3] for the conventional Kondo problem based on
a previous work by Nozières [4], leads us to a classification of critical behaviour for the Kondo
problem in the presence of the electron–electron interactions [5]. It turns out that there are
two types of critical behaviour, i.e., either a local Fermi liquid with standard low-temperature
thermodynamics or the non-Fermi liquid observed by Furusaki and Nagaosa [2]. However, in
order to get a full picture about the critical behaviour of Kondo impurities coupled to Luttinger
liquids, some simple integrable models, as in the conventional Kondo problem which allow
exact solutions [6,7], are desirable.

Several integrable magnetic or nonmagnetic impurity problems describing impurities
embedded in systems of correlated electrons have so far appeared in the literature. Among
them are versions of the supersymmetrict–J model with impurities [8–10]. Such an idea to
incorporate an impurity into a closed chain dates back to Andrei and Johannesson [11] (see
also [12,13]). However, the model thus constructed suffers from a lack of backward scattering
and results in a very complicated Hamiltonian which is diffficult to justify on physical grounds.
Therefore, as observed by Kane and Fisher [14], it is advantageous to adopt open boundary
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conditions with the impurities situated at the ends of the chain when studying Kondo impurities
coupled to integrable strongly correlated electron systems [15,16].

In this letter, we study integrable Kondo impurities in the one-dimensional supersymmetric
U model of strongly correlated electrons, which has been extensively studied in [17–20].
Two different non-c-number boundaryK-matrices are constructed, which turn out to be quite
different from those for thet–J and the supersymmetric extended Hubbard models [16, 21],
due to the fact that no free parameter exists. However, it should be emphasized that our new
non-c-number boundaryK-matrices are highly non-trivial, in the sense that they cannot be
factorized into the product of ac-number boundaryK-matrix and the corresponding local
monodromy matrices. Integrability of the models is established by relating the Hamiltonians
to one-parameter families of commuting transfer matrices. The model is solved by means of
the coordinate Bethe ansatz method and Bethe ansatz equations are derived. It is interesting
to note that our model exhibits a free parameter in the bulk Hamiltonian but no free parameter
exists on the boundaries. This is in sharp contrast to the impurity models arising from the
supersymmetrict–J and extended Hubbard models where there is no free parameter in the
bulk but there is a free parameter on each boundary.

Letc†
j,σ andcj,σ denote the creation and annihilation operators of the conduction electrons

with spinσ at sitej , which satisfy the anti-commutation relations given by{c†
i,σ , cj,τ } = δij δστ ,

wherei, j = 1, 2, . . . , L andσ, τ =↑,↓. Consider the Hamiltonian which describes two
impurities coupled to the supersymmetricU open chain

H = −
L−1∑
j=1

∑
σ

(c
†
jσ cj+1σ + h.c.) exp(− 1

2ηnj,−σ − 1
2ηnj+1,−σ )

+tp
L−1∑
j=1

(c
†
j↑c

†
j↓cj+1↓cj+1↑ + h.c.) +U

L∑
j=1

nj↑nj↓

+JaSa ·
∑
σ,σ ′

τσσ ′c
†
1σ c1σ ′ + Van1 +Uan1↑n1↓

+JbSb ·
∑
σ,σ ′

τσσ ′c
†
Lσ cLσ ′ + VbnL +UbnL↑nL↓ (1)

whereJg, Vg andUg (g = a, b) are, respectively, the Kondo coupling constants, the impurity
scalar potentials and the boundary Hubbard-like interaction constants;τ ≡ (τx, τy, τz)

are the usual Pauli matrices with indices|1〉 = | ↓〉 and |2〉 = | ↑〉; Sg(g = a, b)

are the local moments with spin-1
2 located at the left and right ends of the system

respectively, andtp = U
2 = e−η − 1; njσ is the number density operatornjσ = c

†
jσ cjσ ,

nj = nj↑ + nj↓. Below we will establish the quantum integrability of the model (1)
for the following four choices of the coupling constants: case A:Jg = 2α + 2, Vg =
(α − 1)/2, Ug = −(α2 + α + 1)/α; case B:Jg = −4(α + 1)/[(2α − 1)(2α + 3)], Vg =
3/[(2α − 1)(2α + 3)], Ug = 3/[α(2α − 1)(2α + 3)]; case C:Ja = 2α + 2, Va = (α − 1)/2,
Ua = −(α2 + α + 1)/α, Jb = −4(α + 1)/[(2α − 1)(2α + 3)], Vb = 3/[(2α − 1)(2α + 3)],
Ub = 3/[α(2α − 1)(2α + 3)]; case D: Ja = −4(α + 1)/[(2α − 1)(2α + 3)], Va =
3/[(2α − 1)(2α + 3)], Ua = 3/[α(2α − 1)(2α + 3)], Jb = 2α + 2, Vb = (α − 1)/2,
Ub = −(α2 + α + 1)/α. Here and hereafter,α = 2/U . This is achieved by showing that
the Hamiltonian can be derived from the graded boundary quantum inverse scattering method.
Indeed, the Hamiltonian of the supersymmetricU model with the periodic boundary conditions
commutes with the transfer matrix, which is the supertrace of the monodromy matrixT (u),

T (u) = R0L(u) . . . R01(u). (2)
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The explicit form of the quantumR-matrix R0j (u) is given in [17]. Hereu is the spectral
parameter, and the subscript 0 denotes the auxiliary superspaceV = C2,2. It should be
noted that the supertrace is carried out for the auxiliary superspaceV . The elements of the
supermatrixT (u) are the generators of an associative superalgebraA defined by the relations

R12(u1− u2)
1
T (u1)

2
T (u2) =

2
T (u2)

1
T (u1)R12(u1− u2) (3)

where
1
X≡ X ⊗ 1,

2
X≡ 1 ⊗ X for any supermatrixX ∈ End(V ). For later use, we

list some useful properties enjoyed by theR-matrix: (i) unitarity: R12(u)R21(−u) = 1
and (ii) crossing-unitarity:Rst212 (−u + 2)Rst221 (u) = ρ̃(u) with ρ̃(u) being a scalar function,
ρ̃(u) = u2(2− u)2/[(2 + 2α − u)2(2α + u)2].

In order to describe integrable electronic models on open chains, we introduce two
associative superalgebrasT− andT+ defined by theR-matrixR(u1− u2) and the relations

R12(u1− u2)
1
T − (u1)R21(u1 + u2)

2
T − (u2)

= 2
T − (u2)R12(u1 + u2)

1
T − (u1)R21(u1− u2) (4)

R
st1ist2
21 (−u1 + u2)

1

T st1+ (u1)R12(−u1− u2 + 2)
2

T ist2+ (u2)

=
2

T ist2+ (u2)R21(−u1− u2 + 2)
1

T st1+ (u1)R
st1ist2
12 (−u1 + u2) (5)

respectively. Here the supertranspositionstµ (µ = 1, 2) is only carried out in theµth
componant of the superspaceV ⊗ V , whereasistµ denotes the inverse operation ofstµ.
By modifying Sklyanin’s arguments [22], one may show that the quantitiesτ(u) given by
τ(u) = str(T+(u)T−(u)) constitute a commutative family, i.e. [τ(u1), τ (u2)] = 0 [23,24].

One can obtain a class of realizations of the superalgebrasT+ andT− by choosingT±(u)
to be of the form

T−(u) = T−(u)T̃−(u)T −1
− (−u) T st+ (u) = T st+ (u)T̃ st+ (u)(T

−1
+ (−u))st (6)

with

T−(u) = R0M(u) . . . R01(u) T+(u) = R0L(u) . . . R0,M+1(u) T̃±(u) = K±(u) (7)

whereK±(u), called boundaryK-matrices, are representations ofT± in some representation
superspace. Although many attempts have been made to findc-number boundaryK-matrices,
which may be referred to as the fundamental representation, it is no doubt very interesting to
search for non-c-numberK-matrices, arising as representations in some Hilbert spaces, which
may be interpreted as impurity Hilbert spaces [16].

We now solve (4) and (5) forK−(u)andK+(u). Quite interestingly, for the supersymmetric
U model [17], there are two different non-c-number boundaryK-matrices. One is

KI
−(u) =


1 0 0 0
0 AI−(u) BI−(u) 0
0 CI−(u) DI

−(u) 0
0 0 0 1

 (8)

whereAI−(u) = −(u2 − 2u + 4 − uSza)/ZI−, BI−(u) = 2uS−a /Z
I
−, CI−(u) = 2uS+

a /Z
I
−,

DI
−(u) = −(u2 − 2u + 4 +uSza)/Z

I
−, ZI− ≡ (u− 2)(u + 2), and the other takes the form,

KII
− (u) =


1 0 0 0
0 AII− (u) BII− (u) 0
0 CII− (u) DII

− (u) 0
0 0 0 F−(u)

 (9)
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with AII− (u) = −(u2 − 2u− 4α2 − 4α + 3− uSza)/ZII− , BII− (u) = 2uS−a /Z
II
− ,

CII− (u) = 2uS+
a /Z

II
− , DII

− (u) = −(u2 − 2u− 4α2 − 4α + 3 +uSza)/Z
II
− , F−(u) =

((u + 2α − 1)(u + 2α + 3))/ZII− ,ZII− ≡ (u−2α +1)(u−2α−3). HereS± = Sx± iSy . The
matrixK+(u) can be obtained from the isomorphism of the superalgebrasT− andT+. Indeed,
given a solutionK−(u) of the equation (4), thenK+(u) defined byKst

+ (u) = K−(−u + 1
2) is a

solution of the equation (5). The proof follows from some algebraic computations by making
use of the properties of theR-matrix [24]. Therefore, one may choose the boundary matrix
K+(u) as

KI
+(u) =


1 0 0 0
0 AI+(u) BI+(u) 0
0 CI+(u) DI

+(u) 0
0 0 0 F+(u)

 (10)

where AI+(u) = −(u2 − 4α2 − 4α + 2− (u− 1)Szb)/Z
I
+, BI+(u) = 2(u− 1)S−b /Z

I
+,

CI+(u) = 2(u− 1)S+
b /Z

I
+, DI

+(u) = −(u2 − 4α2 − 4α + 2 + (u− 1)Szb)/Z
I
+, F+(u) =

((u− 2α)(u− 2α − 4))/ZI+, Z
I
+ ≡ (u + 2α + 2)(u + 2α − 2), and

KII
+ (u) =


1 0 0 0
0 AII+ (u) BII+ (u) 0
0 CII+ (u) DII

+ (u) 0
0 0 0 1

 (11)

where AII+ (u) = −(u2 + 3− (u− 1)Szb)/Z
II
+ , BII+ (u) = 2(u− 1)S−b /Z

II
+ , CII+ (u) =

2(u− 1)S+
b /Z

II
+ ,DII

+ (u) = −(u2 + 3 + (u− 1)Szb)/Z
II
+ , ZII+ ≡ (u + 1)(u− 3).

As usual, the boundary transfer matrixτ(u) may be rewritten as

τ(u) = str[K+(u)T (u)K−(u)T −1(−u)]. (12)

SinceK±(u) can be taken asKI
±(u) orKII

± (u), respectively, we have four possible choices of
boundary transfer matrices, which reflect the fact that the boundary conditions on the left end
and on the right end of the open lattice chain are independent. Then it can be shown [23,24] that
Hamiltonians corresponding to all four choices can be embedded into the above four boundary
transfer matrices, respectively. Indeed, the Hamiltonian (1) is related to the transfer matrix
τ(u) (up to an unimportant additive chemical potential term)

HR ≡ − U

2(U + 2)
H = τ ′′(0)

4(V + 2W)

=
L−1∑
j=1

HR
j,j+1 +

1

2

1

K ′− (0) +
1

2(V + 2W)

[
str0

(
0
K+ (0)GL0

)

+ 2 str0

(
0

K ′+ (0)HR
L0

)
+ str0

(
0
K+ (0)

(
HR
L0

)2)]
(13)

whereV = str0K ′+(0), W = str0(
0
K+ (0)HR

L0), H
R
i,j = Pi,jR′i,j (0), Gi,j = Pi,jR′′i,j (0), with

Pi,j being the graded permutation operator acting on theith andj th quantum spaces. (13)
implies that the boundary supersymmetricU model admits an infinite number of conserved
currents which are in involution with each other, thus assuring the integrability. It should be
emphasized that Hamiltonian (1) appears as the second derivative of the transfer matrixτ(u)

with respect to the spectral parameteru atu = 0. This is due to the fact that the supertrace of
K+(0) equals zero. As pointed out in [24], the reason for the zero supertrace ofK+(0) is related
to the fact that the quantum space is a four-dimensionaltypical irreducible representation of
gl(2|1). A similar situation also occurs in the Hubbard-like models [25].
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The Hamiltonian (1) may be diagonalized by means of the coordinate Bethe ansatz method.
The Bethe ansatz equations are(
θj − i

2

θj + i
2

)2L ∏
g=a,b

θj − θg + ic

θj + θg − ic
=

M∏
β=1

θj − λβ + i c2
θj − λβ − i c2

· θj + λβ + i c2
θj + λβ − i c2∏

g=a,b

(λα + ic
2 )

2 − θg2

(λα − ic
2 )

2 − θg2

N∏
j=1

λα − θj + i c2
λα − θj − i c2

· λα + θj + i c2
λα + θj − i c2

=
M∏
β=1
β 6=α

λα − λβ + ic

λα − λβ − ic
· λα + λβ + ic

λα + λβ − ic

(14)

wherec = eη − 1, the charge rapiditiesθj ≡ θ(kj ) are related to the single-particle quasi-
momentakj by θ(k) = 1

2 tan( k2) [18], andθa, θb take the following form for the four choices:
case A:θa = − i

2 , θb = − i
2 ; case B:θa = i

U+2, θb = i
U+2; case C:θa = − i

2 , θb = i
U+2;

case D:θa = i
U+2, θb = − i

2 . The corresponding energy eigenvalueE of the model is given

byE = −2
∑N

j=1 coskj , where we have dropped an additive constant.
In conclusion, we have studied integrable Kondo impurities coupled with the one-

dimensional supersymmetricU open chain. The quantum integrability follows from the fact
that the model Hamiltonian may be embbeded into a one-parameter family of commuting
transfer matrices. Moreover, the Bethe ansatz equations are derived by means of the coordinate
Bethe ansatz approach. It is quite interesting to note that in the boundaryK-matrices (8) and
(9), no free parameter is available, in contrast to thet–J and the supersymmetric extended
Hubbard models [16,21]. Further, it is desirable to investigate the thermodynamic equilibrium
properties of the model, based on the Bethe ansatz equations (14). The details are deferred to
another publication.

This work is supported by OPRS and UQPRS. HQZ is also supported in part by NNSF of
China.

Note added in proof. After completion of this paper, we noticed a preprint from H Hrahm and N A Slavnov entitled
New solution to the reflection equation and the projecting method(cond-mat/9810312), where the method of [16] is
generalized in the context of projection. We are grateful to H Frahm for bringing this reference to our attention.
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